3.659 \(\int \frac{1}{\sqrt{-3-2 \cos (c+d x)} \sqrt{-\cos (c+d x)}} \, dx\)

Optimal. Leaf size=60 \[ -\frac{2 \sqrt{-\tan ^2(c+d x)} \cot (c+d x) F\left (\left .\sin ^{-1}\left (\frac{\sqrt{-2 \cos (c+d x)-3}}{\sqrt{5} \sqrt{-\cos (c+d x)}}\right )\right |-5\right )}{d} \]

[Out]

(-2*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[-3 - 2*Cos[c + d*x]]/(Sqrt[5]*Sqrt[-Cos[c + d*x]])], -5]*Sqrt[-Tan[c +
d*x]^2])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0556197, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.037, Rules used = {2815} \[ -\frac{2 \sqrt{-\tan ^2(c+d x)} \cot (c+d x) F\left (\left .\sin ^{-1}\left (\frac{\sqrt{-2 \cos (c+d x)-3}}{\sqrt{5} \sqrt{-\cos (c+d x)}}\right )\right |-5\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[-3 - 2*Cos[c + d*x]]*Sqrt[-Cos[c + d*x]]),x]

[Out]

(-2*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[-3 - 2*Cos[c + d*x]]/(Sqrt[5]*Sqrt[-Cos[c + d*x]])], -5]*Sqrt[-Tan[c +
d*x]^2])/d

Rule 2815

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Sqrt[a^2]*Sqrt[-Cot[e + f*x]^2]*Rt[(a + b)/d, 2]*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x
]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f*Sqrt[a^2 - b^2]*Cot[e + f*x]), x] /; FreeQ[{a, b, d, e, f}, x
] && GtQ[a^2 - b^2, 0] && PosQ[(a + b)/d] && GtQ[a^2, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-3-2 \cos (c+d x)} \sqrt{-\cos (c+d x)}} \, dx &=-\frac{2 \cot (c+d x) F\left (\left .\sin ^{-1}\left (\frac{\sqrt{-3-2 \cos (c+d x)}}{\sqrt{5} \sqrt{-\cos (c+d x)}}\right )\right |-5\right ) \sqrt{-\tan ^2(c+d x)}}{d}\\ \end{align*}

Mathematica [B]  time = 0.440684, size = 155, normalized size = 2.58 \[ \frac{4 \sin ^4\left (\frac{1}{2} (c+d x)\right ) \sqrt{\cot ^2\left (\frac{1}{2} (c+d x)\right )} \csc (c+d x) \sqrt{-\cos (c+d x) \csc ^2\left (\frac{1}{2} (c+d x)\right )} \sqrt{(2 \cos (c+d x)+3) \csc ^2\left (\frac{1}{2} (c+d x)\right )} F\left (\sin ^{-1}\left (\sqrt{\frac{5}{3}} \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)-1}}\right )|\frac{6}{5}\right )}{\sqrt{5} d \sqrt{-2 \cos (c+d x)-3} \sqrt{-\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[-3 - 2*Cos[c + d*x]]*Sqrt[-Cos[c + d*x]]),x]

[Out]

(4*Sqrt[Cot[(c + d*x)/2]^2]*Sqrt[-(Cos[c + d*x]*Csc[(c + d*x)/2]^2)]*Sqrt[(3 + 2*Cos[c + d*x])*Csc[(c + d*x)/2
]^2]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[5/3]*Sqrt[Cos[c + d*x]/(-1 + Cos[c + d*x])]], 6/5]*Sin[(c + d*x)/2]^4)
/(Sqrt[5]*d*Sqrt[-3 - 2*Cos[c + d*x]]*Sqrt[-Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.429, size = 128, normalized size = 2.1 \begin{align*} -{\frac{\sqrt{10}\sqrt{2} \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{5\,d \left ( 2\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+\cos \left ( dx+c \right ) -3 \right ) }{\it EllipticF} \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }},{\frac{i}{5}}\sqrt{5} \right ) \sqrt{{\frac{3+2\,\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\sqrt{-3-2\,\cos \left ( dx+c \right ) }{\frac{1}{\sqrt{-\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-3-2*cos(d*x+c))^(1/2)/(-cos(d*x+c))^(1/2),x)

[Out]

-1/5/d*EllipticF((-1+cos(d*x+c))/sin(d*x+c),1/5*I*5^(1/2))*10^(1/2)*((3+2*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*2^
(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(-3-2*cos(d*x+c))^(1/2)*sin(d*x+c)^2/(2*cos(d*x+c)^2+cos(d*x+c)-3)/(-c
os(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-\cos \left (d x + c\right )} \sqrt{-2 \, \cos \left (d x + c\right ) - 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3-2*cos(d*x+c))^(1/2)/(-cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-cos(d*x + c))*sqrt(-2*cos(d*x + c) - 3)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-\cos \left (d x + c\right )} \sqrt{-2 \, \cos \left (d x + c\right ) - 3}}{2 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3-2*cos(d*x+c))^(1/2)/(-cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-cos(d*x + c))*sqrt(-2*cos(d*x + c) - 3)/(2*cos(d*x + c)^2 + 3*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{- \cos{\left (c + d x \right )}} \sqrt{- 2 \cos{\left (c + d x \right )} - 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3-2*cos(d*x+c))**(1/2)/(-cos(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(-cos(c + d*x))*sqrt(-2*cos(c + d*x) - 3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-\cos \left (d x + c\right )} \sqrt{-2 \, \cos \left (d x + c\right ) - 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-3-2*cos(d*x+c))^(1/2)/(-cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-cos(d*x + c))*sqrt(-2*cos(d*x + c) - 3)), x)